Nuclear Power Trends Energy Economics and Sustainability

L. H. Tsoukalas Purdue University

Outline

- The Problem
- Nuclear Energy Trends
- Energy Economics
- Life Cycle Analysis
- Nuclear Sustainability
- Nuclear Energy in Greece?

The Problem

"Petroleum Man will be virtually extinct this Century, and Homo Sapiens faces a major challenge in adapting to his loss"

Dr. Colin J. Campbell, 2008
Preeminent Petroleum Geologist

A Solution

"There is no sensible alternative to nuclear power if we are to sustain civilization"

Professor James Lovelock Father of Gaia Hypothesis Co-Founder of Greenpeace

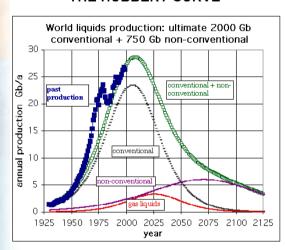
Civilization and Energy Availability



Modernity is based on Growth in Energy Availability!

2008 Growth in Energy Availability

- Petroleum demand
- ~ 86 million barrels of oil per day
- Petroleum supply
 - ~86+ million barrels of oil per day
- Market volatility
 - Stable markets need ~5% excess capacity
 - Are we witnessing the beginning of a series of oil-induced crises?

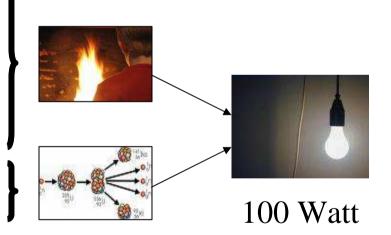


Peak in Global Oil Production?

THE HUBBERT CURVE

Bakhtiari, S. A-M. World Oil Production Capacity Model Suggests Output Peak by 2006-07, Oil and Gas Journal (OGJ), May 2004

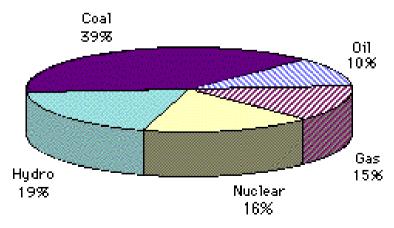
Forecasting the Peak


Sourse	Peak
Bakhtiari, A.M.S.	2006-07
Simmons, M.R.	2007-09
Campbell, C.	2008
Deffeyes, K.S.	2005
Laherrere, J.	2010-2020
Shell	After 2025
CERA	After 2020

Energy Economics

Ultimately reflect fuel energy density and availability

Fuel	Energy Density (MJ/kg)	100W light bulb per 1kg fuel	
Wood	10	1.2 days	
Coal	32.5	3.8 days	
Crude oil	41.9	4.8 days	
Diesel	45.8	5.3 days	
Natural Uranium	6.3×10^5	72,000 days	


Source: http://www.whatisnuclear.com/

Global Nuclear Today

- 439 nuclear power reactors (31 countries)
- Over 12,000 years of operating experience
- Nuclear reactors supply 16% of the world's electricity as base-load power (372,000 MWe of total capacity)
- 284 research reactors (56 countries)
- 220 reactors for ships and submarines

Nuclear Energy Trends

Electricity Generated	Reactors Operating	Reactors in Building Phase	On Order or Planned	Proposed
16%	439	33	94	222
2658 TWh	(372 GWe)	(27 GWe)	(101 GWe)	(193 GWe)

- Significant safety innovations in 3rd Generation nuclear reactors (evolutionary designs such as ABWE, EPR, AP1000, ESBWR)
- France and Japan major forces in nuclear energy
- China to build 200 reactors by 2050!

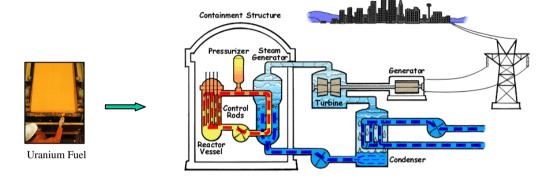
Sources:

Reactor data: WNA to 17/10/07.

IAEA- for nuclear electricity production & percentage of electricity (% e) 5/07.

WNA: Global Nuclear Fuel Market (reference scenario) - for U. Includes first cores for new reactors.

Operating = Connected to the grid;

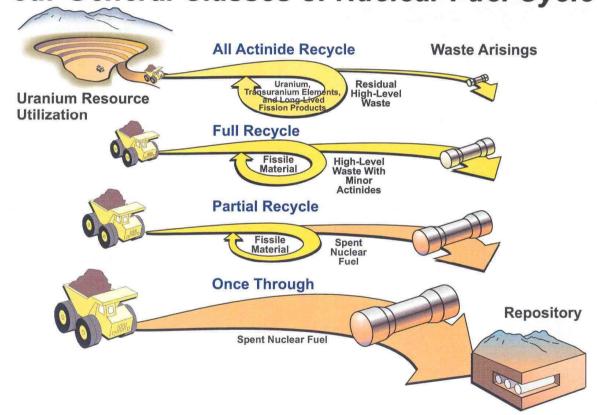

Building/Construction = first concrete for reactor poured, or major refurbishment under way (* In Canada, 'construction' figure is 2 laid-up Bruce A reactors); Planned = Approvals, funding or major commitment in place, mostly expected in operation within 8 years, or construction well advanced but suspended indefinitely; Proposed = clear intention or proposal but still without firm commitment. Planned and Proposed are generally gross MWe.

TWh = Terawatt-hours (billion kilowatt-hours), MWe = Megawatt net (electrical as distinct from thermal), kWh = kilowatt-hour

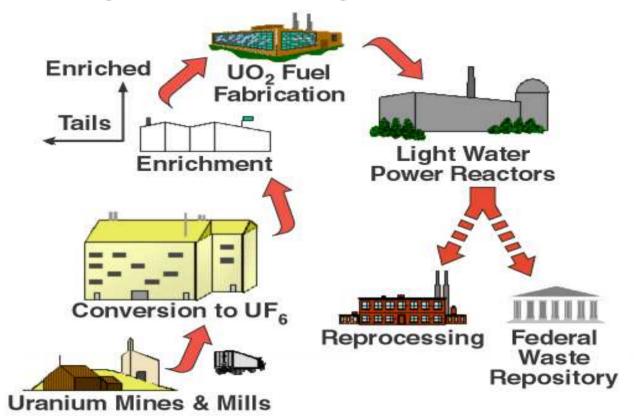
Is Nuclear Energy Renewable?

- Yes, because a reactor produces energy and at the same time generates new fuel
 - Input fuel is U-235 (together with ~97% U-238)
 - U-235 is progressively 'burned' to produce heat (~3-5 years)
 - But about 1/3 the energy yield comes from Pu-239, which is fuel also
 - This is because the fission of U-235 causes some of the U-238 to turn into Pu-239, so about half of the U-235 used actually renews itself by producing Pu-239 from the otherwise waste material, that is, U-238
- Can U-235 be made fully renewable?
 - Yes, using Breeder Reactors to "breed" more Pu-239 than consumed (by way of U-235 + Pu-239)
- Nuclear energy can be produced indefinitely!

Source: http://www.world-nuclear.org/


Barriers

- Negative public perception
- Non-proliferation and lack of global standards
- Nuclear "waste" issues
- Limited skills and industrial capacities
- Question of the past
 - Shall we have nuclear power in the energy mix or get as much as we can out of existing plants and phase them out?
- Questions now asked
 - Can we have new nuclear power?
 - How soon?
 - How do we get there?

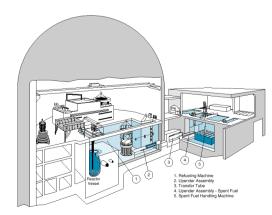

Nuclear Fuel Cycles

Four General Classes of Nuclear Fuel Cycle

Life Cycle Analysis

- •Most of the Nuclear Fuel Cycle can now run on (nuclear) electricity (no CO₂ emissions)
- •No major technical barriers to recycling
- •Significantly large Energy Return on Energy Investment (EROI)

EXCELLENCE in TALENT, MACHINES, CODES


- Top Scientists and Engineers
- Strong regulatory agency and strong enforcement framework
- New business models with publicprivate financing partnerships
- Informed public dialogue

Nuclear Energy in Greece?

- Over 20 million tons of CO₂ per year above Kyoto cap
- CO₂ savings alone may finance 2 EPR-type reactors (in less than 10 years?)
- Each reactor earns more than \$1B gross annually from electricity sales
- Major benefits to:
 - Improved environmental quality
 - Nurturing engineering and scientific human capital
 - Competitive construction, cement, and metals (including ship-building) industries
 - Electrification of transportation
 - Informatics
 - Financial industry

