ΤΙΤΛΟΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ:

ΜΕΛΕΤΗ ΧΑΜΗΛΟΔΙΑΣΤΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΖΟΜΕΝΩΝ ΣΤΟ SiC

Λαφατζής Δημήτριος Υποψήφιος διδάκτωρ στο Α.Π.Θ. – Τμήμα Φυσικής

<u>ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ</u>: Καθηγ. ΛΟΓΟΘΕΤΙΔΗΣ ΣΤΕΡΓΙΟΣ (Τμ. Φυσικής, ΑΠΘ) Αν. Καθηγ. ΣΤΕΡΓΙΟΥΔΗΣ ΓΕΩΡΓΙΟΣ (Τμ. Φυσικής, ΑΠΘ) Ερευν.Γ΄ ΜΕΡΓΙΑ ΚΩΝΣΤΑΝΤΙΝΑ (ΙΠΤΑ, ΕΚΕΦΕ «Δημοκριτος»)

Επιβλέπων: Μεργιά Κωνσταντίνα

ΙΝΣΤΙΤΟΥΤΟ ΠΥΡΗΝΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΤΙΝΟΠΡΟΣΤΑΣΙΑΣ

ΣΤΟΧΟΙ ΕΡΕΥΝΑΣ

- Επιστρώσεις βασιζόμενες στο SiC με στόχο τη δημιουργία φραγμών οξείδωσης και διάχυσης και με προβλεπόμενες εφαρμογές στην Αεροναυπηγική
- Μελέτη των φαινομένων οξείδωσης και διάχυσης σε χαμηλοδιάστατα συστήματα
- Εφαρμογή μεθόδων ανάκλασης νετρονίων και ακτίνων Χ στη μελέτη χαμηλοδιάστατων συστημάτων

<u>ΜΕΘΟΔΟΛΟΓΙΑ</u>

- Παρασκευή δειγμάτων SiC σε διάφορα υποστρώματα με τη μέθοδο της καθοδικής ιοντοβολής
- Οξείδωση SiC σε διάφορες θερμοκρασίες και χρόνους
- Παρασκευή επιστρώσεων που δρουν ως φραγμοί οξείδωσης

Χαρακτηρισμός δειγμάτων:

- Φασματοσκοπία υπερύθρου (FTIR)
- Ανακλαστικότητα νετρονίων και ακτίνων Χ
- Περίθλαση ακτίνων X σε μικρές γωνίες πρόσπτωσης

ΠΡΟΟΔΟΣ

- Βαθμονόμηση του φασματομέτρου FTIR
- Οξειδώσεις δειγμάτων σε διαφορετικές θερμοκρασίες και για διαφορετικά χρονικά διαστήματα.
- Μετρήσεις διαπερατότητας υπερύθρου όλων των δειγμάτων τόσο πριν όσο και μετά την οξείδωσή τους
- Μετρήσεις των ίδιων δειγμάτων με ανακλαστικότητα νετρονίων στο Laboratoire Leon Brillouin (LLB), Saclay, Γαλλία (υπό εξέλιξη)

<u>KAΘOΔIKH IONTOBOΛH</u> (SPUTTER DEPOSITION)

<u>ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ</u> <u>FTIR</u>

Η φασματοσκοπία υπερύθρου προκύπτει από την απορρόφηση IR ακτινοβολίας από τα δονούμενα μόρια

$$I = I_0 e^{-\mu x}$$

I₀: ένταση της ακτινοβολίας που προσπίπτει στο δείγμα
I: είναι η ένταση της ακτινοβολίας που εξέρχεται από το δείγμα
μ: συντελεστής απορρόφησης
x: πάχος του δείγματος

<u>ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ</u> <u>FTIR</u>

- Φασματικό εύρος συχνοτήτων από 4000 έως 200 cm⁻¹(αντιστοιχούν σε ενέργειες από 0.025 0.5 eV)
- Το δείγμα περιγράφεται με σύστημα ταλαντωτών με συχνότητες συντονισμού ν_{0,i}
- Η ενέργεια του συστήματος είναι κβαντισμένη

άλμα σε ανώτερη ενεργειακή στάθμη

 $\Delta E = hv$

η διερχόμενη ακτινοβολία δεν περιλαμβάνει τα απορροφούμενα φωτόνια

<u>Συνθήκες για τη λήψη υπέρυθρου</u> φάσματος

- Το υπόστρωμα πρέπει να είναι σχετικά
 διαφανές στην υπέρυθρη ακτινοβολία
- Το μόριο πρέπει να είναι ενεργό στην υπέρυθρη ακτινοβολία

ΦΑΣΜΑΤΟΜΕΤΡΟ ΥΠΕΡΥΘΡΟΥ (FTIR) MONTEAO EQUINOX 55S THΣ BRUKER

ΒΑΘΜΟΝΟΜΗΣΗ ΟΡΓΑΝΟΥ FTIR-

<u>ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

- Βέλτιστη τιμή
 διαφράγματος (aperture):
 5 mm
- Η χρήση αζώτου δεν
 βελτιώνει τις μετρήσεις
 μας στην περιοχή των k
 που ενδιαφερόμαστε
- Τα αποτελέσματα είναι
 επαναλήψιμα

<u>ΜΕΤΡΗΣΕΙΣ IR</u>

<u>Το Si δεν οξειδώνεται στους 400, 700 °C</u>

Πολύ σημαντικό εύρημα γιατί οι εναποθέσεις του SiC γίνονται σε υπόστρωμα πυριτίου

Πάχος δείγματος Si: (380 ± 20) nm

<u>ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ IR</u>

- Χαρακτηριστική κορυφή SiC σε υπόστρωμα Si χωρίς να έχει υποστεί οξείδωση
- Ονομαστικό πάχος SiC
 128 nm
- Κορυφή SiC κοντά στα 770 cm⁻¹

<u>ΜΕΤΡΗΣΕΙΣ IR</u>

Το εμβαδό της κορυφής του SiC είναι ανάλογο του πάχους του

<u>ΟΞΕΙΔΩΣΗ ΣΤΟΥΣ 400 °C</u>

- Όλα τα δείγματα είναι του ίδιου ονομαστικού πάχους (128 nm)
- Η απορρόφηση του SiO₂ παρουσιάζεται στα 1050 cm⁻¹ και φαίνεται να μην μεταβάλλεται με το χρόνο οξείδωσης
- Η κορυφή του οξειδωμένου SiC μετατοπίζεται ελαφρώς προς τα δεξιά

<u>ΟΞΕΙΔΩΣΗ ΣΤΟΥΣ 700 °C</u>

- Η απορρόφηση του SiO₂ παρουσιάζεται στα 1070 cm⁻¹ και αυξάνεται με το χρόνο οξείδωσης
- Η κορυφή του οξειδωμένου SiC λεπταίνει και μετατοπίζεται ελαφρώς προς τα δεξιά (ένδειξη ότι το δείγμα αρχίζει να κρυσταλλώνεται)

<u>ΟΞΕΙΔΩΣΗ ΣΤΟΥΣ 900 °C</u>

- Η απορρόφηση του SiO₂ παρουσιάζεται στα 1070 cm⁻¹ και αυξάνεται σταθερά με το χρόνο οξείδωσης
- Η κορυφή του οξειδωμένου
 SiC λεπταίνει και μετατοπίζεται
 προς τα δεξιά
- Η απορρόφηση του SiC αυξάνει τις 4 πρώτες ώρες (ένδειξη κρυστάλλωσης),
- Μετά από 16 ώρες παρουσιάζεται μείωση της απορρόφησης του SiC

Structural investigations of SiC layers WP1.2 (Demokritos)

Neutron reflectivity data from SiC layer (EX23) on Si wafer Neutron reflectivity data from SiC layer (EX27) on Si wafer

The insets present the in-depth neutron density profile

<u>ΕΠΟΜΕΝΑ ΒΗΜΑΤΑ</u>

> Ποσοτική ανάλυση των προαναφερθέντων μετρήσεων

- Σύγκρισή τους με τα πειραματικά αποτελέσματα που θα προκύψουν από την ανακλαστικότητα νετρονίων
- Εύρεση κατάλληλου μοντέλου που θα περιγράφει τα παραπάνω αποτελέσματα