

National Research Council and NCSR Demokritos

Athens, May 8, 2008 Dr. Lambros Lois lelois@verizon.net

PRESENTATION SUMMARY

- Objectives of Nuclear Power Regulation
- Major Functions
- Organizational Structure
- "What" and "How" is Regulated
- Examples of Regulatory Actions
- TMI 2 Summary
- Conclusions

NRC's MISSION

Protect People and the Environment

From Radiation Hazards

Through Regulation

TO BE ACCOMPLISHED THROUGH:

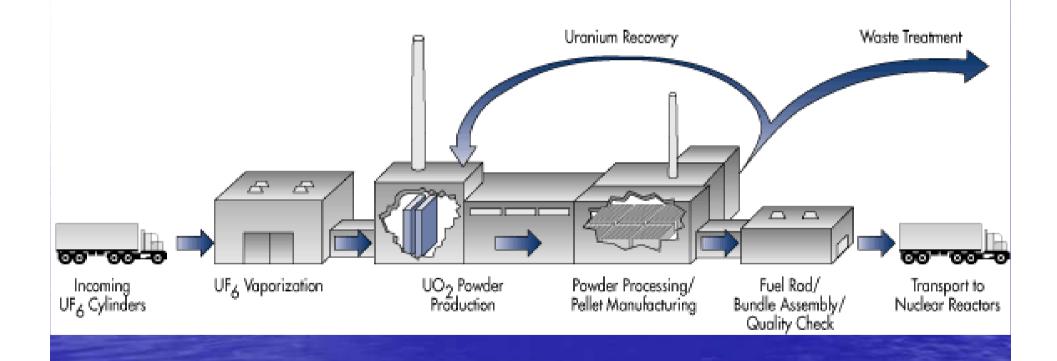
- REGULATIONS, REQUIREMENTS, AND ACCEPTANCE CRITERIA
- LICENSING OF NUCLEAR FACILITIES FOR POSSESSION, USE, AND DISPOSAL OF NUCLEAR MATERIALS
- INSPECTION OF FACILITIES, PROCESSES, AND USERS, TO ENSURE COMPLIANCE WITH REGULATIONS AND REQUIREMENTS

HISTORICAL MILESTONES

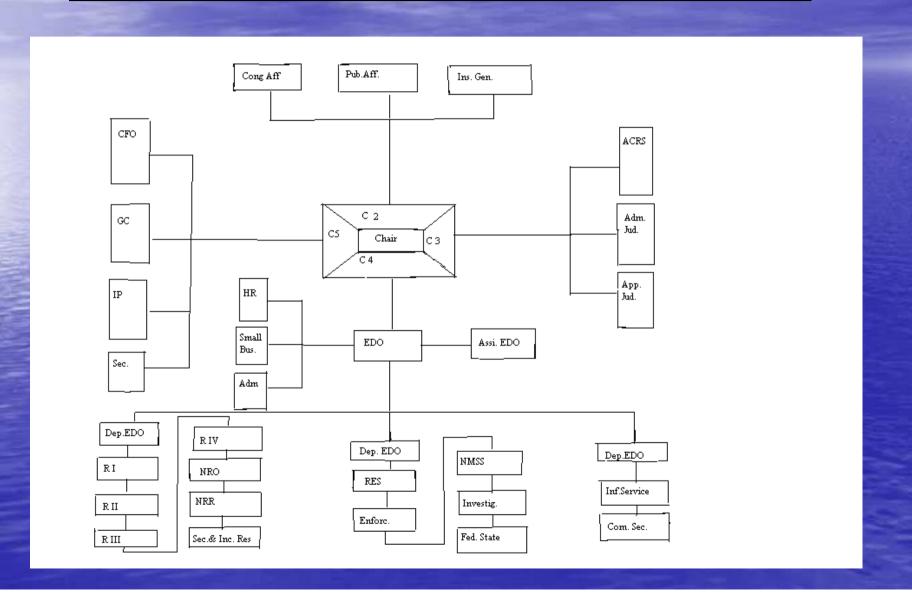
- The NRC was created by the Energy Reorganization Act of 1974
- Began operation in January 1975 when it split from the AEC
- The AEC was created by the Atomic Energy Act of 1954
- The NRC has about 3500 employees

MAJOR FUNCTIONS

- Licensing nuclear power plants, fuel cycle facilities, nuclear materials for medical, industrial, educational, research, etc.
- Inspection and enforcement to assure compliance with regulations
- Regulatory research; regarding technical aspects for the resolution of regulatory issues


ORGANIZATIONAL IMPLEMENTATION OF FUNCTIONS

- Office of Nuclear Reactor Regulation
- Office of New Reactors
- Office of Nuclear Materials Safety and Safeguards
- Office of Federal and State Materials and Environmental Management Program
- Office of Nuclear Regulatory Research
- Office of Nuclear Security and Incident Response
- Office of Investigations
- Office of the Inspector General


INDEPENDENT COMMITTEES

- Advisory Committee on Reactor Safeguards
- Advisory Committee on Nuclear Waste
- Advisory Committee on Medical Uses of Isotopes
- Atomic Safety and Licensing Board Panel (Appeals)

FUEL CYCLE

ADMINISTRATIVE STRUCTURE

OPERATIONAL AND EVOLUTION FEEDBACK

Regulations and Guidance

- Rulemaking
- Guidance Development
- Generic Communications
- · Standards Development

Operational Experience

- · Events Assessment
- · Generic Issues

Support for Decisions

- · Research Activities
- Risk Assessment
- Advisory Activities
- CRGR Réviews
- Adjudication

Licensing, Decommissioning and Certification

- Licensing
- Decommissioning
- Certification

Oversight

- Inspection
- Performance Assessment
- Enforcement
- Allegations
- Investigations

CONNECTION TO OUTSIDE STAKEHOLDERS

- The NRC is acting in concert with other organizations such as:
 - The Environmental Protection Agency
 - The Congress
 - The Department of Energy
 - Agreement States

MAJOR LICENSING ACTIONS

- Certification: for new plant designs
- COL: Combined Operating License; for a plant of a certified design to be located on a specific site
- License Extension: Extending existing plant's 40 (calendar) year license to 60 years
- Power Uprates; Minor (< 5%) or major (> 5 and up to 20%) power uprate for existing (40 year) plants
- Site Reviews

"TYPICAL" STEPS IN LICENSING ACTIONS

- Major Actors: Licensee (LC), Project Manager (PM), Reviewer (Rev), Branch Chief (BC), Management (MG), General Counsel (GC)
- LC: Submittal on the Docket
- PM: Assigns all or parts to a Branch or Branches
- BC: Assigns one or more reviewers

...CONTINUED

- Rev: Identifies applicable regulations for the requested Change
- Rev: Performs acceptance review; cursory examination for completeness vs. the request and the pertinent regulations
- Rev: Studies the submittal and if he/she finds missing information or has questions, submits a request for additional information (RAI) or rejects the submittal
- Rev: At this point the particular review is halted until the requested information is provided

...CONTINUED

- Rev: If the reviewer is satisfied proceeds, otherwise repeats the last round
- Rev: The reviewer writes a safety evaluation report (SER) and justifies his/her conclusion on technical reasons based on the applicable regulations
- PM: Collects the reviewer contributions and assembles an Overall SER for the submittal
- MG: Reviews the SER and if found adequate goes to GC
- GC: Reviews the SER and if found adequate is issued to the licensee
- Note: The above steps do not include the important (but infrequent) side-steps of a public hearing and/or an ACRS presentation by the staff and the licensee.

THREE MILE ISLAND, UNIT 2

- March 28, 1979, 3:00am
- Sequence of events:
- FW pump failure >> > turbine trip >>> reactor trip and shutdown >>> primary pressure increase >>> PORV opened (as required) >>> but did not re-close >>> resulting in a small break LOCA >>> operators did not realize the LOCA and thought that the vessel was going water solid >>> reduced primary flow >>> resulting in partial core melt.

THREE MILE ISLAND, UNIT 2

- Noble gases (Kr, Xe) were vented from the reactor building.
- Evacuation of pregnant women and children under 5 was ordered in a 5 mile radius.
- Max dose at the site boundary was about 100 mrem, average population dose was 1 mrem.
- (Average X-ray is about 6 mrem and annual background is about 100 mrem)

CORRECTIVE ACTIONS RESULTING FROM TMI

- Upgraded plant design and equipment requirements
- Human performance was identified as a major component
- Operating instructions were improved
- Restructured "Emergency Response" particularly communication with all stakeholders
- Established a new program regarding licensee performance and effectiveness into a public report
- Established regular plant performance analysis
- Expanded the NRC inspection program to at least two Inspectors/plant
- Expanded performance oriented inspections

...CONTINUED

- Enforcement became a separate organization at the NRC
- Establishment of INPO industry's approach to regulation
- Installation of additional equipment to mitigate accident conditions and measure radiation levels
- Initiated activities of identifying, collecting, evaluating and disseminating operational experience, and
- Expanded international programs of sharing safety information worldwide.

POST TMI-2 IN PLAIN LANGUAGE

- Increased inspection and enforcement
- Emphasis on preventive maintenance
- Change of safety culture
- Increased communications
- Post TMI-2 results

GENERAL COMMENTS AND OBSERVATIONS (Conclusions)

- Regulation covers the entire fuel cycle
- Regulation is an ever evolving activity because of operational experience feedback, technological innovations, new and evolutionary designs, etc.
- Regulation involves public participation, that requires communication of risk
- Regulation requires "regulatory infrastructure" that involves: a legal framework, financial arrangements (insurance), provisions for decommissioning, educational programs, international cooperation, etc.

...continued

 The cornerstone of successful regulation is the technical competence of the staff and management.

A well-regulated nuclear power plant is a <u>safe</u>, <u>productive</u>, and <u>profitable</u> plant.

